Czy wolisz polską wersję strony elektroda?
Nie, dziękuję Przekieruj mnie taminverter 3000 watt circuit
diagram
Power budget & topology choice
• P = 3000 W, η (target efficiency) ≈ 91 % → Pin ≈ 3300 W
• With 24 V battery ⇒ Iin ≈ 3300 W / 24 V ≈ 138 A (still manageable with 25 mm² copper)
• Two mainstream architectures
a) Low-frequency transformer inverter (direct 50/60 Hz drive) – simpler magnetics, heavier copper/iron, lower efficiency (≈85 %).
b) Two-stage high-frequency (recommended):
– Stage-1: 24 V DC → 380 V DC via full-bridge, 35 kHz transformer + rectifier.
– Stage-2: 380 V DC → 230 V AC via SPWM full-bridge + LC filter.
Functional block diagram (HF two-stage)
[24 V Battery]
↓ (fuse 150 A, TVS, EMI filter)
[Bulk input capacitors 6 × 4700 µF 35 V]
↓
┌───────────────── Stage-1: DC-DC Boost (≈35 kHz) ─────────────────┐
│ SG3525 @35 kHz → Gate driver ICs (2 × IRS2186) │
│ ► Full-bridge 4 × 100 V MOSFETs (e.g. IPP110N10N3) │
│ ► HF transformer ETD59, Np:Ns ≈ 2.2:25 (for 24 → 380 V) │
│ ► Secondary full-bridge rectifier (4 × STTH6006) │
└───────────────── 380 V DC BUS (470 µF 450 V + snubbers) ─────────┘
↓ (NTC inrush, bus shunt 5 mΩ, Hall current sensor)
┌───────────────── Stage-2: DC-AC Inverter (SPWM) ─────────────────┐
│ MCU (STM32 / C2000) generates 20 kHz carrier + 50 Hz sine │
│ ► Gate driver 2 × IR2110 (with 250 ns dead-time) │
│ ► 600 V IGBTs 4 × FGA60N65SMD (or 650 V SiC FETs) │
└──────────────────────────────────────────────────────────────────┘
↓
[LC output filter: L = 2.0 mH, C = 1.0 µF / 305 VAC X2]
↓
[230 V AC, 50 Hz OUTPUT] → RCD / GFCI, AC fuse, MOV surge arrestor
Key calculations (core items)
• Transformer apparent power: S ≈ P/η ≈ 3.3 kVA → choose 3.5 kVA core.
• HF transformer flux: \( Ae = \frac{V{pri}}{4 f N B_{max}} \) → at 35 kHz, Bmax ≤ 0.25 T, ETD59 meets thermal margin.
• Output LC corner: \( f_c = \frac{1}{2\pi\sqrt{LC}} \) choose fc ≈ 1.8 kHz (<20 kHz carrier / >50 Hz fundamental).
Control & protection
– MCU closed-loop RMS regulation via AC RMS/Bus voltage feedback.
– Fast cycle-by-cycle over-current (hardware comparators) <2 µs.
– Battery UVLO 21 V, OVLO 30 V; bus OVP 420 V.
– Thermal cutoff 90 °C on heatsink + 120 °C on transformer.
Thermal design
– Stage-1 MOSFETs: total dissipation ≈ 40 W → 0.9 °C/W heatsink + forced air.
– IGBTs: ≈ 55 W combined → isolated pad, 0.6 °C/W sink + fan.
– 80 mm × 2 blower giving 100 CFM across both sinks and DC bus capacitors.
Partial schematic (power stage only – simplified)
=== Stage-2 H-Bridge (380 V BUS) ===
380 V BUS (+) ────o───────────────o─────── AC_L
| | (to filter)
QH1 ─────┘ QH2 ──┘
IGBT | |
o o
| |
AC_N─────────o────────────── AC_N
| (to filter)
QL1 ─────────────┘ QL2 ───┘
IGBT
BUS (−) ─────────────────────────────────────────
(Each switch leg: 2 × IGBT in parallel for current sharing; gate resistors 15 Ω; 1 µF/400 V snubber across each leg.)
• Wide-bandgap devices (SiC FETs, GaN HEMTs) now enable 98 % efficient 3 kW inverters with 100 kHz switching and smaller magnetics (TI TIDA-010054, Infineon EVAL_3KWTL_2).
• Digital control (C2000, STM32G4, Microchip dsPIC33) dominates for THD < 2 %.
• Ready-made half-bridge power modules (e.g. Vincotech, Semikron) simplify layout and EMI compliance.
• Regulatory push (UL 1741 SB, IEC 62109-1/-2) requires certified isolation and anti-islanding for grid-tied versions.
• Why 24 V not 12 V? Halving current (138 A vs 276 A) reduces I²R loss by 75 %.
• Why two-stage? Eliminates 50 Hz iron (25 kg) and improves efficiency/THD.
• Dead-time: ≥400 ns prevents cross-conduction; too large increases distortion.
• Snubbers + RC clamp tame transformer leakage spikes; otherwise MOSFET avalanche destroys devices.
• Lethal voltages: enclosure must meet IP2X touch-safe rules.
• EMC: CISPR 11 class A radiated/conducted limits; mandatory shielded enclosure, common-mode chokes.
• Disposal: Large electrolytics are RoHS but require WEEE compliant recycling.
Common pitfalls & cures
• Shoot-through → check gate-driver ground bounce, use Kelvin source.
• Audible whine → increase carrier to 23 kHz, retune LC.
• Bus over-voltage on load dump → add 800 V TVS + active crowbar.
• The schematic fragments supplied are illustrative; exact values depend on magnetic design, PCB parasitics and chosen switching frequency.
• Building a 3 kW inverter without high-voltage experience is dangerous; commercial certified units are often cheaper than the BOM of a safe DIY build.
• TI reference designs: TIDA-010054 (3 kW SiC inverter), TIDM-HV-1PH-DCAC.
• Infineon AN 2016-11 “Designing a 3 kW solar micro-inverter with CoolMOS™”.
• IEEE Transactions on Power Electronics, “Comparison of Si, SiC and GaN devices in single-phase 3 kVA inverters”.
• Books: Erickson & Maksimović “Fundamentals of Power Electronics” (HF transformer chapter).
A 3000 W inverter consists of:
1) A high-current low-voltage input stage,
2) A DC-DC boost (or low-frequency transformer) to create a high-voltage DC bus,
3) A full-bridge SPWM stage,
4) An LC filter and comprehensive protection/feedback circuitry.
Modern designs favour a 24 V or 48 V battery, a 35-100 kHz HF transformer, digital SPWM control and SiC/IGBT switches to achieve >90 % efficiency and <3 % THD. Because of the severe electrical and thermal stresses, only experienced engineers equipped with isolation probes, thermal analysis tools and knowledge of relevant safety standards should attempt to build such a device.