logo elektroda
logo elektroda
X
logo elektroda

Geometry Reference Sheet

Geometry Reference Sheet

Find a Quick Geometry Reference Cheat Sheet with Area and Circumference Formulas.
Download PDF Download Image

Algebra Math Help

Arithmetic Operations
Arithmetic Properties
Operations Examples
Exponent Properties
Props. of Radicals
Props. of Inequalities
Props. of Absolute Value
Complex Numbers
Def. of Complex Numbers
Props. of Complex Numbers

Logarithms

Def. of Logarithms
Logarithm Properties

Factoring

Polynomials
Quadratic Equation
Common Factoring Examples
Square Root
Absolute Value
Completing the Square

Functions and Graphs

Constant Function
Linear Function
Parabola
Circle
Ellipse
Hyperbola


Algebra Math Help

Arithmetic Operations

The basic arithmetic operations are addition, subtraction, multiplication, and division. These operators follow an order of operation.

Addition

Addition is the operation of combining two numbers. If more than two numbers are added this can be called summing. Addition is denoted by + symbol. The addition of zero to any number results in the same number. Addition of a negative number is equivalent to subtraction of the absolute value of that number.

Subtraction

Subtraction is the inverse of addition. The subtraction operator will reduce the first operand (minuend) by the second operand (subtrahend). Subtraction is denoted by - symbol.

Multiplication

Multiplication is the product of two numbers and can be considered as a series of repeat addition. Multiplication of a negative number will result in the reciprocal of the number. Multiplication of zero always results in zero. Multiplication of one always results in the same number.

Division

Division is the method to determine the quotient of two numbers. Division is the opposite of multiplication. Division is the dividend divided by the divisor.

Arithmetic Properties

The main arithmetic properties are Associative, Commutative, and Distributive. These properties are used to manipulate expressions and to create equivalent expressions in a new form.

Associative

The Associative property is related to grouping rules. This rule allows the order of addition or multiplication operation on numbers to be changed and result the same value.


latex!encoded:base64,QSAqIChCKkMpID0gKEEqQikgKiBD

Commutative

The Commutative property is related the order of operations. This rule applies to both addition and subtraction and allows the operands to change order within the same group.


latex!encoded:base64,QSArIEIgKyBDID0gQiArIEEgKyBD


Distributive

The law of distribution allows operations in some cases to be broken down into parts. The property is applied when multiplication is applied to a group of division. This law is applied in the case of factoring.


latex!encoded:base64,QSAqIChCK0MpID0gQSAqIEIgKyBBICogQw==


Arithmetic Operations Examples

latex!encoded:base64,YWIrYWMgPSBhIChiK2Mp


latex!encoded:base64,YSBcbGVmdCAoIFxmcmFje2J9e2N9IFxyaWdodCApID0gXGZyYWN7YWJ9e2N9


latex!encoded:base64,XGZyYWN7XGxlZnQgKCBcZnJhY3thfXtifSBccmlnaHQgKX17Y30gPSBcZnJhY3thfXtiY30=


latex!encoded:base64,XGZyYWN7YX17XGxlZnQgKCBcZnJhY3tifXtjfSBccmlnaHQgKX0gPSBcZnJhY3thY317Yn0=


latex!encoded:base64,XGZyYWN7YX17Yn0gKyBcZnJhY3tjfXtkfSA9IFxmcmFje2FkICsgYmN9e2JkfQ==


latex!encoded:base64,XGZyYWN7YX17Yn0gLSBcZnJhY3tjfXtkfSA9IFxmcmFje2FkIC0gYmN9e2JkfQ==


latex!encoded:base64,XGZyYWN7YS1ifXtjLWR9ID0gXGZyYWN7Yi1hfXtkLWN9


latex!encoded:base64,XGZyYWN7YStifXtjfSA9IFxmcmFje2F9e2N9ICsgXGZyYWN7Yn17Y30=


latex!encoded:base64,XGZyYWN7YWIrYWN9e2F9ID0gYiArIGMsIGEgXG5lcSAgMA==


latex!encoded:base64,XGZyYWN7XGxlZnQgKCBcZnJhY3thfXtifSBccmlnaHQgKX17XGxlZnQgKCBcZnJhY3tjfXtkfSBccmlnaHQgKX0gPSBcZnJhY3thZH17YmN9


Exponent Properties

latex!encoded:base64,YV5uIGFebSA9IGFee24rbX0=


latex!encoded:base64,KGFebilebSA9IGEgXm5ebQ==


latex!encoded:base64,KGFiKV5uID0gYV5uYl5u


latex!encoded:base64,YV57LW59ID0gXGZyYWN7MX17YX0=


latex!encoded:base64,XGxlZnQgKCBcZnJhY3thfXtifSBccmlnaHQgKV57LW59ID0gXGxlZnQgKCBcZnJhY3tifXthfSBccmlnaHQgKV5uID0gXGZyYWN7Yl5ufXthXm59


latex!encoded:base64,XGZyYWN7YV5ufXthXm19ID0gYV57bi1tfSA9IFxmcmFjezF9e2Fee20tbn19


latex!encoded:base64,YV4wID0gMSwgYSBcbmVxIDA=


latex!encoded:base64,XGxlZnQgKCBcZnJhY3thfXtifSBccmlnaHQgKV5uID0gXGZyYWN7YV5ufXtiXm59


latex!encoded:base64,XGZyYWN7MX17YV57LW59fSA9IGFebg==


latex!encoded:base64,YV5cZnJhY3tufXttfSA9IFxsZWZ0ICggYV5cZnJhY3sxfXttfSBccmlnaHQgKV5uID0gXGxlZnQgKCBhXm4gXHJpZ2h0ICleXGZyYWN7MX17bX0=


Properties of Radicals

latex!encoded:base64,XHNxcnRbbl17YX0gPSBhXlxmcmFjezF9e259


latex!encoded:base64,XHNxcnRbbV17XHNxcnRbbl17YX19ID0gXHNxcnRbbW5de2F9


latex!encoded:base64,XHNxcnRbbl17YWJ9ID0gXHNxcnRbbl17YX0gXHNxcnRbbl17Yn0=


latex!encoded:base64,XHNxcnRbbl17XGZyYWN7YX17Yn19ID0gXGZyYWN7XHNxcnRbbl17YX19e1xzcXJ0W25de2J9fQ==


latex!encoded:base64,XHNxcnRbbl17YV5ufSA9IGEsIFx0ZXh0cm17IGlmIFx0ZXh0c2x7bn0gaXMgb2RkfQ==


latex!encoded:base64,XHNxcnRbbl17YV5ufSA9IFxsZWZ0IHwgIGFccmlnaHQgfCwgXHRleHRybXsgaWYgXHRleHRzbHtufSBpcyBldmVufQ==


Properties of Inequalities

latex!encoded:base64,XHRleHRybXsgaWYgfSBhIDwgYiBcdGV4dHJteyB0aGVuIH0gYSArIGMgPCBiICsgYyBcdGV4dHJteyBhbmQgfSBhIC0gYyA8IGIgLSBj


latex!encoded:base64,XHRleHRybXsgaWYgfSB7YTxifSA=latex!encoded:base64,XHRleHRybXsgYW5kIH0ge2M+MH0gXHRleHRybXsgdGhlbiB9IGFjIDwgYmMgXHRleHRybXsgYW5kIH0gXGZyYWN7YX17Yn0gPCBcZnJhY3tifXtjfQ==


latex!encoded:base64,XHRleHRybXsgaWYgfSB7YTxifSBcdGV4dHJteyBhbmQgfSB7YzwwfSA= latex!encoded:base64,XHRleHRybXsgdGhlbiB9IGFjPmJjIFx0ZXh0cm17IGFuZCB9IFxmcmFje2F9e2J9PlxmcmFje2J9e2N9


Properties of Absolute Value

latex!encoded:base64,XGxlZnQgfCBhIFxyaWdodCB8ID0gXGxlZnRce1xiZWdpbnttYXRyaXh9CmEsICYgXHRleHRybXsgaWYgfSBhIFxnZXEgMCBcXCAKLWEsICYgXHRleHRybXsgaWYgfSBhIDwgMApcZW5ke21hdHJpeH1ccmlnaHQu


latex!encoded:base64,XGxlZnQgfCBhIFxyaWdodCB8ID0gXGxlZnQgfCAtYSBccmlnaHQgfA==


latex!encoded:base64,XGxlZnQgfCBhIFxyaWdodCB8IFxnZXEgMA==


latex!encoded:base64,XGxlZnQgfCBhYiBccmlnaHQgfCA9IFxsZWZ0IHwgYSBccmlnaHQgfCBcbGVmdCB8IGIgXHJpZ2h0IHw=


latex!encoded:base64,XGxlZnQgfCBcZnJhY3thfXtifSBccmlnaHQgfCA9IFxmcmFje1xsZWZ0IHwgYSBccmlnaHQgfH17XGxlZnQgfCBiIFxyaWdodCB8fQ==


latex!encoded:base64,XGxlZnQgfCBhK2IgXHJpZ2h0IHwgXGxlcSBcbGVmdCB8IGEgXHJpZ2h0IHwgKyBcbGVmdCB8IGIgXHJpZ2h0IHw=


Complex Numbers

Definition of Complex Numbers

Complex numbers are an extension of the real number system. Complex numbers are defined as a two dimension vector containing a real number and an imaginary number. The imaginary unit is defined as:


latex!encoded:base64,aSA9IFxzcXJ0LTE=


The complex number format where a is a real number and b is an imaginary number is defined as:


latex!encoded:base64,YSArIGJp


Unlike the real number system where all numbers are represented on a line, complex numbers are represented on a complex plane, one axis represents real numbers and the other axis represents imaginary numbers.


Properties of Complex Numbers


latex!encoded:base64,aSA9IFxzcXJ0LTE=


latex!encoded:base64,YSArIGJp


latex!encoded:base64,aV57Mn0gPS0xCg==


latex!encoded:base64,XHNxcnR7LWF9ID0gaVxzcXJ0e2F9LCBcIGFcZ2VxIDA=


latex!encoded:base64,XGxhcmdlIChhK2JpKSsoYytkaSk9YSArIGMgKyAoYitkKWk=


latex!encoded:base64,XGxhcmdlIChhK2JpKS0oYytkaSk9YSAtIGMgKyAoYi1kKWk=


latex!encoded:base64,KGEgKyBiaSkoYytkaSkgPSBhYyAtIGJkICsgKGFkICsgYmMpaQ==


latex!encoded:base64,KGErYmkpKGEtYmkpID0gYV57Mn0rYl57Mn0=


latex!encoded:base64,fGEgKyBiaXwgPSBcc3FydHthXnsyfStiXjJ9fQ==


latex!encoded:base64,XG92ZXJsaW5leyhhK2JpKX0gPSBhIC0gYmk=


latex!encoded:base64,XG92ZXJsaW5leyhhK2JpKX0oYStiaSkgPSB8YSArIGJpfF57Mn0=


Logarithms

Definition of Logarithms

A logarithm is a function that for a specific number returns the power or exponent required to raise a given base to equal that number. Some advantages for using logarithms are very large and very small numbers can be represented with smaller numbers. Another advantage to logarithms is simple addition and subtraction replace equivalent more complex operations. The definition of a logarithms is:


latex!encoded:base64,eSA9IGxvZ197Yn14, where latex!encoded:base64,XGxhcmdlIHg9Yl57eX0=  and   latex!encoded:base64,XGxhcmdlIHg+MA==


Definition of Natural Log


latex!encoded:base64,bG5cIHggPSBsb2dfe2V9eA==,  where  latex!encoded:base64,ZT0yLjcxODI4MTgyODQ1OQ==


Definition of Common Log


latex!encoded:base64,bG9nXCB4ID0gbG9nX3sxMH14


Logarithm Properties


latex!encoded:base64,bG9nX3tifWIgPSAx


latex!encoded:base64,bG9nX3tifTE9MA==


latex!encoded:base64,bG9nX3tifWJee3h9ID0geA==


latex!encoded:base64,XGxhcmdlIGJee2xvZ197Yn14fSA9IHg=


latex!encoded:base64,bG9nX3tifSh4XntyfSk9cmxvZ197Yn0gXCB4


latex!encoded:base64,bG9nX3tifSh4eSkgPSBsb2dfe2J9eCArIGxvZ197Yn15


latex!encoded:base64,bG9nX3tifShcZnJhY3t4fXt5fSkgPSBsb2dfe2J9eC1sb2dfe2J9eQ==


Factoring

Polynomials

A polynomial is an expression made up of variables, constants and uses the operators addition, subtraction, multiplication, division, and raising to a constant non negative power. Polynomials follow the form:


latex!encoded:base64,Zih4KSA9IGFfe259eF57bn0rYV97bi0xfXhee24tMX0rLi4uK2FfezJ9eF57Mn0rYV97MX14K2FfezB9


The polynomial is made up of coefficients multiplied by the variable raised to some integer power. The degree of a polynomial is determined by the largest power the variable is raised.


Quadratic Equation

A quadratic equation is a polynomial of the second order.


latex!encoded:base64,YXheezJ9K2J4K2M9MA==


The solution of a quadratic equation is the quadratic formula. The quadratic formula is:


latex!encoded:base64,eD1cZnJhY3stYlxwbSBcc3FydHtiXnsyfS00YWN9fXsyYX0=


Common Factoring Examples


latex!encoded:base64,eF4yIC0gYV4yID0gKHgrYSkoeC1hKQ==


latex!encoded:base64,eF4yICsgMmF4ICsgYV57Mn0gPSAoeCthKV57Mn0=


latex!encoded:base64,eF57Mn0gLSAyYXggKyBhXnsyfSA9ICh4LWEpXjI=


latex!encoded:base64,eF57Mn0rKGErYil4ICsgYWIgPSh4K2EpKHgrYik=


latex!encoded:base64,eF57M30gKyAzYXheezJ9ICsgM2FeezJ9eCArYV57M30gPSAoeCthKV57M30=


latex!encoded:base64,eF57M30gKyBhXnszfSA9ICh4ICsgYSkoeF57Mn0gLSBheCArIGFeezJ9KQ==


latex!encoded:base64,eF57M30gLSBhXnszfSA9ICh4IC0gYSkoeF57Mn0gKyBheCArYV57Mn0p


latex!encoded:base64,eF57Mm59IC0gYV57Mm59ID0gKHhee259IC0gYV57bn0pKHhee259ICthXntufSk=


Square Root

The square root is a function where the square root of a number (x) results in a number (r) that when squared is equal to x.


latex!encoded:base64,XHNxcnQgeCA9IHIg  and latex!encoded:base64,cl57Mn0gPSB4


Also the square root property is:


if latex!encoded:base64,eF57Mn0gPSBh then latex!encoded:base64,eD0gXHBtXHNxcnQgYQ==


Absolute Value


latex!encoded:base64,fHh8ID0gYlxyaWdodGFycm93IHggPSBi  or  latex!encoded:base64,eCA9IC1i


latex!encoded:base64,fHh8IDxiIFxyaWdodGFycm93ICAtYiA8eCA8Yg==


latex!encoded:base64,fHh8PmJccmlnaHRhcnJvdyAgeDwtYiA=  or  latex!encoded:base64,eD5i


Completing the Square

Completing the square is a method used to solve quadratic equations. Algebraic properties are used to manipulate the quadratic polynomial to change its form. This method is one way to derive the quadratic formula.


latex!encoded:base64,YXheMitieCtjPWEoLi4uKV4yK2NvbnN0YW50


The steps to complete the square are:

  1. Divide by the coefficient a.
  2. Move the constant to the other side.
  3. Take half of the coefficient b/a, square it and add it to both sides.
  4. Factor the left side of the equation.
  5. Use the square root property.
  6. Solve for x.


Functions and Graphs

Expressions evaluated at incremental points then plotted on a Cartesian coordinate system is a plot or graph.


Constant Function

When a function is equal to a constant, for all values of x, f(x) is equal to the constant. The graph of this function is a straight line through the point (0,c).


latex!encoded:base64,Zih4KT1j


Linear Function

A linear function follows the form:


latex!encoded:base64,Zih4KT1teCti


The graph of this function has a slope of m and the y intercept is b. It passes through the point (0,b). The slope is defined as:


latex!encoded:base64,bT1cZnJhY3t5X3syfS15X3sxfX17eF97Mn0teF97MX19PVxmcmFje3Jpc2V9e3J1bn0=


An addition form for linear functions is the point slope form:


latex!encoded:base64,eT15X3sxfSArIG0oeC14X3sxfSk=


Parabola or Quadratic Function

A parabola is a graphical representation of a quadratic function.


latex!encoded:base64,Zih4KT1heF4yK2J4K2M=


The graph of a parabola in this form opens up if a>0 and opens down if a<0. The vertex of the parabola is located at:

latex!encoded:base64,XGxlZnQgKCAtXGZyYWN7Yn17MmF9LCBcbGVmdCBmKCAtXGZyYWN7Yn17MmF9IFxyaWdodCApIFxyaWdodCAp


Other forms of parabolas are:

latex!encoded:base64,Zyh5KSA9IGF5XnsyfSArYnkrYw==


The graph of a parabola in this form opens right if a>0 or opens left if a<0. The vertex of the parabola is located


latex!encoded:base64,XGxlZnQgKCBnXGxlZnQgKCAtXGZyYWN7Yn17MmF9IFxyaWdodCApLC1cZnJhY3tifXsyYX0gXHJpZ2h0ICk=


Circle

The function of a circle follows the form:


latex!encoded:base64,KHgtaCleMisoeS1rKV4yPXJeMg==

Where the center of the circle is (h,k) and the radius of the circle is r.


Ellipse

The function of an ellipse follows the form:


latex!encoded:base64,XGZyYWN7KHgtaCleMn17YV4yfStcZnJhY3soeS1rKV4yfXtiXjJ9PTE=


Where the center of the ellipse is (h,k)

Hyperbola

The function of a Hyperbola that opens right and left from the center follows the form:


latex!encoded:base64,XGZyYWN7KHgtaCleMn17YV4yfS1cZnJhY3soeS1rKV4yfXtiXjJ9PTE=


The function of a Hyperbola that opens up and down from the center follows the form:


latex!encoded:base64,XGZyYWN7KHktayleMn17Yl4yfS1cZnJhY3soeC1oKV4yfXthXjJ9PTE=


Where the center of the hyperbola is (h,k), with asymptotes that pass through the center with slopes of:


latex!encoded:base64,bSA9IFxwbSBcZnJhY3tifXthfQ==