logo elektroda
logo elektroda
X
logo elektroda

How to Calculate Voltage Drop Across Two Series Resistors in a Circuit?

45 16
ADVERTISEMENT
  • #1 21670071
    ASAD ALI
    Anonymous  
  • ADVERTISEMENT
  • #2 21670072
    Sajed Rakhshani
    Anonymous  
  • #3 21670073
    Steve Lawson
    Anonymous  
  • #4 21670074
    Steve Lawson
    Anonymous  
  • #5 21670075
    DAVID CUTHBERT
    Anonymous  
  • ADVERTISEMENT
  • #6 21670076
    Steve Lawson
    Anonymous  
  • #7 21670077
    ASAD ALI
    Anonymous  
  • #8 21670078
    Steve Lawson
    Anonymous  
  • ADVERTISEMENT
  • #9 21670079
    ASAD ALI
    Anonymous  
  • #10 21670080
    Sajed Rakhshani
    Anonymous  
  • #11 21670081
    Steve Lawson
    Anonymous  
  • #12 21670082
    Steve Lawson
    Anonymous  
  • ADVERTISEMENT
  • #13 21670083
    Sajed Rakhshani
    Anonymous  
  • #14 21670084
    Steve Lawson
    Anonymous  
  • #15 21670085
    Cody Gass
    Anonymous  
  • #16 21670086
    Cody Gass
    Anonymous  
  • #17 21670087
    Cody Gass
    Anonymous  

Topic summary

The discussion addresses calculating voltage drops across two series resistors in a circuit with a voltage source and a current source. The problem involves applying Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current Law (KCL) to determine individual voltage drops. Initial attempts incorrectly assumed current relationships, leading to inconsistent voltage values violating Kirchhoff’s laws. Correct analysis shows that the current through the first resistor (Rab) and the second resistor (Rbc) differ due to the presence of a 1A current source in parallel. Using the Norton equivalent circuit transformation (converting the voltage source and series resistor into a current source with parallel resistors) clarifies the problem. The final correct solution finds the current through Rab as 0.5A, resulting in a voltage drop of 0.5V, and the voltage drop across Rbc as 1.5V, satisfying both KCL and KVL. Ohm’s Law (V=IR) is fundamental in these calculations. The discussion highlights the importance of correctly modeling the circuit and carefully applying circuit laws to solve for voltage drops in complex circuits involving current sources.
Summary generated by the language model.
ADVERTISEMENT