Elektroda.com
Elektroda.com
X

Will the cheapest solar charger from China be able to charge a smartphone?

p.kaczmarek2 6921 19
This content has been translated flag-pl » flag-en View the original version here.
  • Will the cheapest solar charger from China be able to charge a smartphone?
    Hello my dear.
    I invite you to a practical test of the cheapest solar charger with USB 5V output. This charger comes in the form of a single 26cm x 14cm panel and has an integrated converter with (if possible) a stable 5V output. In this topic, I will check whether in sunny, March / April weather, you can actually charge the phone with it and then show what the inverter looks like from the inside. The test will be made from the perspective of a typical user, i.e. I will take two phones (Samsung and Apple) and check whether they can be charged to any significant extent throughout the sunny day.

    Purchase of a solar charger
    Now I am not able to quote the specific price for which I bought this gadget, because it was about 1.5 years ago, but similar chargers are on the network under the slogan "USB 5V solar charger 6W", at the moment at prices around $ 10:
    Will the cheapest solar charger from China be able to charge a smartphone?
    This 6W is rather a bit exaggerated, although retailers also sell this product as 20W and above.
    Will the cheapest solar charger from China be able to charge a smartphone?
    The dimensions of my charger (including margins) are 26cm by 14cm. There are several types of them on sale, all of them no-name, I am not able to recommend a specific seller who has "better" models.


    First test
    I chose the simplest possible test methodology - I just pick up the phone and try to charge it.
    I made my first attempt on March 14th. A sunny day, one of the warmest. Around 15C.
    I started charging at 13:30 with a 13% battery charge. I was charging via USB Doctor all the time, which significantly lowered the charging efficiency.
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone?
    At 2:53 PM it was already 22%:
    Will the cheapest solar charger from China be able to charge a smartphone?
    83 minutes of charging - an increase of approximately 9%.


    Second test
    I did the second test on March 23. Sunny day, almost 20C, it's practically spring.
    This time I decided to charge directly from the panel, without an additional voltmeter / ammeter.
    The day before the test, I unloaded the phone to zero, especially turning on the applications (something with 3D graphics) and the flashlight.

    At 9:30 I made sure my phone was completely discharged to 0%.
    Will the cheapest solar charger from China be able to charge a smartphone?Will the cheapest solar charger from China be able to charge a smartphone? Will the cheapest solar charger from China be able to charge a smartphone?
    At 10:39 am I unfolded the panel and started charging (or so I thought).
    Will the cheapest solar charger from China be able to charge a smartphone? Will the cheapest solar charger from China be able to charge a smartphone?
    It turned out that I miscalculated - the phone did not charge at all, as I later checked the USB Doctor himself, it showed that no electricity was flowing.
    At 12:52 I decided that it did not make sense - the phone is loaded to 0% and it is not able to start charging from this panel.
    I made sure that the USB cable and the panel were really working - the LD25 showed almost 2.5W:
    Will the cheapest solar charger from China be able to charge a smartphone?
    I decided to charge the phone a bit from my laptop. Just for the display to start working:
    Will the cheapest solar charger from China be able to charge a smartphone?
    I charged it to 2%.
    Around 1:12 pm I reconnected the phone and checked the power consumption.
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone? Will the cheapest solar charger from China be able to charge a smartphone?
    0.23A at 4.6V = 1W.
    However, it should be remembered that USB Doctor can lower it, and for example the LD25 showed almost 2.5W.
    At 1:18 PM it was already 3%.
    Will the cheapest solar charger from China be able to charge a smartphone?
    At 13:27 it was already 7%.
    Will the cheapest solar charger from China be able to charge a smartphone?
    At 2:35 pm it was already 39%.
    Will the cheapest solar charger from China be able to charge a smartphone?
    By 15:07 it was already 53%.
    Will the cheapest solar charger from China be able to charge a smartphone?
    At 15:58 already 73%:
    Will the cheapest solar charger from China be able to charge a smartphone?
    At 16:23 already 82%:
    Will the cheapest solar charger from China be able to charge a smartphone?
    The phone was almost fully charged. Unfortunately, after 4:30 PM I had to finish, but I think that the experiment showed well that this charger works.
    Conclusion: the phone completely discharged to 0 did not start charging, and when it was at least 1% it went smoothly.


    Third test - iPhone 8
    Now, for a change, a slightly different type of phone - iPhone 8, also unloaded to 0.
    Will the cheapest solar charger from China be able to charge a smartphone?
    I started loading at 11:09 am:
    Will the cheapest solar charger from China be able to charge a smartphone?
    This time I checked the currents on the USB Doctor right away - so that the phone is not charging because it is not turned on ... the results, however, were promising:
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone?

    0.62A at 4.24V. This voltage is much lower than the minimum according to the USB standard (4.75V), but the phone is still charging. The panel gives less than 3W.
    At 11:21 it was already 5% (anticipating the question - the charging icon disappeared because I covered the panel while standing to take a photo):
    Will the cheapest solar charger from China be able to charge a smartphone?
    11:42 - 10%:
    Will the cheapest solar charger from China be able to charge a smartphone?
    12:42 - 22%:
    Will the cheapest solar charger from China be able to charge a smartphone?
    13:11 - 31%:
    Will the cheapest solar charger from China be able to charge a smartphone?
    At this stage, I had to stop charging, but this charged iPhone worked all day this and the next, which shows well that this charger and him could extend his life.


    Balcony test, fixing the panel on the balcony
    So far, all tests have been performed by me outdoors, in fairly good weather and with the possibility of regular correction of the panel arrangement.
    For a change, I decided to try slightly more difficult conditions.
    I decided to install the panel on the balcony facing south. I designed the mounting in Blender and printed it on a 3D printer:
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone?
    The fastening has a tightening mechanism implemented on the bolt and an additional knob that facilitates tightening:
    Will the cheapest solar charger from China be able to charge a smartphone?
    Additional (separately printed) elements holding the panel:
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone?
    Ready mount, along with a red wire that only protects the panel so that if it is dropped, it does not fall down ...
    Will the cheapest solar charger from China be able to charge a smartphone?
    I started the test at 10:20 with 3%. The sun was regularly blocked by clouds.
    Will the cheapest solar charger from China be able to charge a smartphone?
    At 4:30 PM I stopped because it started raining - 66% charged.
    Will the cheapest solar charger from China be able to charge a smartphone?
    So you can also charge the phone from the balcony.

    What's inside the charger?
    I think experienced users can guess what can be found inside such a solar charger, but I decided to check it anyway. The white plastic mold is stuck with glue, but with the help of a knife I was able to remove it:
    Will the cheapest solar charger from China be able to charge a smartphone?
    Integrated circuit, choke, rectifying diode (Schottki) ... a step down converter?
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone?
    The IC is XL1410E1 and the diode is SS34.
    Will the cheapest solar charger from China be able to charge a smartphone?
    Will the cheapest solar charger from China be able to charge a smartphone?
    By the way, there is also a red LED on this module that lights up during operation. As you can see, the manufacturer assembled this charger from ready-made modules ...



    Voltage before inverter, last tests
    Due to bad weather, I had to wait a bit for a warm and sunny day, but when I finally did, I had the opportunity to measure the voltage in front of the step down converter.
    Will the cheapest solar charger from China be able to charge a smartphone? Will the cheapest solar charger from China be able to charge a smartphone?
    Illuminated - 7V
    Shaded - 6V
    Finally, I tried to measure with a second USB meter:
    Will the cheapest solar charger from China be able to charge a smartphone?
    but I did not note any news, and the display of this meter is not visible in the pictures anyway.

    What could be done better?
    My play with the charger had one purpose - to check whether an ordinary "Kowalski" is able to charge the phone with it. And I think I answered that - absolutely yes. 3W can be pulled out of it.
    The test could, however, be carried out much more scientifically. External power supply, microcontroller, RTCC, saving the current current and voltage to the SD card and then drawing a nice graph ...
    The same should be remembered that "% charge" is a bad representation of how much the charger gives us, because the cells have different capacities and are in different states of wear (with time their capacity decreases)
    I am fully aware of it, but I still think that I answered the question on the subject.

    Summary
    It turns out that this little solar charger is definitely able to charge a large part of the phone in one sunny day. , just remember that:
    - any USB meters connected to the phone make charging difficult (the voltage drop below the USB standard itself may prevent charging at all)
    - depending on the phone, there may be a problem with charging the phone completely discharged (my Samsung discharged to the point of complete shutdown did not want to charge at all, but as soon as I charged it from the laptop to 1%, it started to charge normally from the solar charger)
    - of course, that the USB cable and its resistance matter
    When it comes to measurements, this charger in the March / April Polish sun was able to give me up to 0.5A at 5V for Samsung and approx 0.7A at 4.9V for iPhone.
    Another issue also arises - you have to remember that the phone itself decides what current it can take from the charger . The ways of determining the current efficiency of a charger vary between manufacturers. Some just jumper the D + and D- lines, and others connect them to VDD and ground through specific resistors. However, stillbetter chargers have an integrated circuit responsible for negotiation (and I do not mean the QC standard and higher voltages - these systems are also in chargers working only on 5V), for example IP2112 . Charger test based on IP2112 you can see here.
    To sum up, I was able to get the most from this charger about 3W.
    On the basis of this, you can already count and estimate how much we will actually charge during the day (roughly, because the angle of illumination itself is important).
    I would like to add that both phones used for testing do not have batteries on the verge of exhaustion and after charging with a solar charger I could use them normally for a day, up to two days depending on the intensity level (for example, this iPhone lasts for a very long time, unless you take photos or actively browsing the internet).
    That's it for me.
    If there is interest, then I will perform a more detailed test later, with the creation of a current / voltage graph over time, of course with an external power supply so as not to interfere with the measurement results, but I think it will not be necessary.
    In the meantime, I ask - how many of you are prepared for a longer lack of electricity supply? Such a charger may seem like a toy, but I think that if there was no electricity for 2 days, it would really save many people the possibility of using the phone (in good weather).

    Cool? Ranking DIY
    About Author
    p.kaczmarek2
    Moderator Smart Home
    Offline 
    p.kaczmarek2 wrote 5843 posts with rating 5827, helped 279 times. Been with us since 2014 year.
  • #2
    LightOfWinter
    Level 36  
    p.kaczmarek2 wrote:
    In the meantime, I ask - how many of you are prepared for a longer lack of electricity supply? Such a charger may seem like a toy, but I think that if there was no electricity for 2 days, it would really save many people the possibility of using the phone (in good weather).


    Hello
    If you are talking about a power cut of 2 days, a power bank will be much better. It charges much faster and has enough energy for a few charges.
    However, the device is interesting, a similar one was offered by Decathlon some time ago.
  • #3
    alikatek
    Level 29  
    I have something similar only built into the powerbank. Theoretically, if you leave this powerbank in the sun, it will charge itself. On the practical side, it took me 9 days to charge it in the sun. The capacity of the powerbank is 4 18650 cells with a capacity of 2200mAh each. In addition, when charging in the sun, the entire device was very much heated by the sun, which certainly does not serve the life of the cells inside.
    If someone would like to buy it, this is the device:

    Will the cheapest solar charger from China be able to charge a smartphone?

    You can buy the housing only and the version with cells.
    I bought the housing only, I have enough cells from disassembly. Those mounted in the housing have been checked for capacity before assembly.
  • #4
    ptero
    Level 23  
    Hello.
    I had no electricity for 2 weeks recently ... No power bank would be able to withstand :)

    I have a similar home made device - a 50W solar panel and a charger with a 12v 24Ah battery.
    It worked :)

    Enough for a tablet and modem :)


    Regards
  • #5
    Anonymous
    Level 1  
  • #6
    viayner
    Level 43  
    Hello,
    I once bought a "tourist" solar battery with a description of 30W !, it gives 5V and 1.2A short-circuit current, I charged a 10Ah powerbank and a day of full sun gives about 2500mAh. You can use it as an emergency during an expedition.
    Similarly, I bought a "box with a solar panel" to act as a powerbank recharged by the sun :) with astronomical (for Far East possibilities) 20000mAh, 2200mA battery inside, the panel gives 5V 100mA and charges toto for a week, and the powerbank itself has problems with newer phones, the converter detects too high load (if the phone has a fast charging, despite the "box "it supports) and disconnects and reconnects every 2-3 seconds.
    These are Chinese toys.
    Regards
  • #7
    SylwekK
    Level 32  
    p.kaczmarek2 wrote:
    In the meantime, I ask - how many of you are prepared for a longer lack of electricity supply?

    It works continuously from the beginning, and the only thing I changed was a new 700Wh li-ion package:

    https://www.elektroda.pl/rtvforum/topic1764675.html

    It came in handy a few times, and recently, about two months ago, when they turned on the electricity for an hour while firing the stove up in winter. Not for a long time, but still ....
  • #8
    MiroLord
    Level 25  
    Once, after an adventure with a CO boiler (loaded and lit and no power here - it was stabilized at 96 degrees), I bought an emergency power supply from a Techtron ZA-TECH 500 with an AGN 65 Ah battery. It works great. Outside the heating season, it serves as an emergency lighting after storms or storms, and there is also enough to charge the phone.
  • #9
    szeryf3
    Level 27  
    @ p.kaczmarek2 I thought that you would write an opinion from your magic box after the test that it was rubbish and it was a pity for the money invested.
  • #10
    DJCheester
    Level 24  
    Hello, the charger will charge something from poverty, I mean the one from the author of the project, but keeping the phone in the sun all day does not serve this purpose, I used to make such a large powerbank

    https://www.elektroda.pl/rtvforum/topic3135095.html

    Currently, I have even larger ones, as the cells are parallel, this voltage gives 3.7V with a power bank converter system, it can be used for a month. The solar battery exposed through the glass as charging helps me to fully charge the power bank all the time.

    Will the cheapest solar charger from China be able to charge a smartphone? Will the cheapest solar charger from China be able to charge a smartphone?

    The plus of this is that only the solar battery is exposed to the sun, the li-ion batteries are in the shade at home and so is the phone. And keeping it in direct sunlight will definitely shorten the battery life of your phone as well. In addition, the phone also heats up unnecessarily from the sun.

    The energy from this powerbank is sufficient for several dozen phone charges, it is difficult to determine exactly how much because the solar battery replenishes energy on an ongoing basis.

    I definitely recommend this solution.

    Regards...
  • #11
    Anonymous
    Level 1  
  • #12
    DJCheester
    Level 24  
    145000mAh, cells assembled from the disassembly of old packages, fully functional. Regards...
  • #13
    michał_bak
    Level 21  
    It is known that the amount of energy obtained from panels is determined by the amount of light incident on the panel. Some experiment can be done with such small panels. How will the panel change when we illuminate it with a mirror?
  • #14
    PiotrPitucha
    Level 34  
    Hello
    I have a toy like Alikatek but my experiences are slightly different :(
    It turns out that some phones light up the screen for a few minutes while charging, instead of only displaying the percentage of charge, the panel starts to limit the current and a disco with turning the power on and off begins.
    The reason is the current limitation, which in itself is not a problem for electronics, but you have to disassemble the circuit, find the current sensor on the board and reduce its value. My current disco phone does not work and I am delaying the corrections, but I warn potential buyers not to be disappointed. My panel charges quite smoothly and after charging and connecting some phones, there is a disco, which confirms my thesis that the problem is limiting the current on the step up converter.
    Regards
  • #15
    OPservator
    Level 37  
    It's cool, but as a day PV on the roof fry me 26-40kW, when charging from a 230V socket, I charge from the panel in an hour :D
  • #16
    tad224
    Level 13  
    viayner wrote:
    I once bought a solar "tourist" battery with a description of 30W !, gives 5V and 1.2A short-circuit current

    So the cell had 5 V * 1.2 A = 6 W and it was really 80%, or 5 W. Another thing is that in Finland ...
    I have several panels and mine 30W is really 18W active power. A 50 W dawal 22 W.
    The author answered himself by performing experiments that such a charger only works on sunny days.
    This can be estimated "by eye" by dimensions, not description.

    My 30W panel has the dimensions of 40x33cm which is 1320cm2, by the author's 364cm2, if it had the effectiveness of mine, it would be 5W.
    But it is weaker. Probably 5V at the output of the inverter? and the measured current is less than 0.5A or 2.5W.
    Even assuming that for 8 hours it will charge the smartphone in full sun with an average power of 1.5 W, it will load 12 Wh.
    Smartphone batteries range from 1500mAh to 3500mAh. Multiplying 1.5 Ah * 3.8 V (average battery voltage) we get 6Wh, and for max 14 Wh.
    So on a sunny day, some smartphones will be able to fully charge others.
    And on a cloudy day, when the power is 5% - 15%, you can recharge only a few percent, it takes 5-7 days for a full charge.

    For charging a smartphone, e-cigarette or an evening lamp, I built such a contraption with 24 3S8P lithium cells. It has a capacity of 17 Ah and 185 Wh of energy.
    Built-in solar cell charging meters in V / A / mAh / Wh and taken from the battery.
    Switches allow you to charge directly from the cells or from a battery as a power bank, and to charge anything through a voltage and current regulated converter, or via USB 5V.
    Block diagram below. unchecked active balancer connected to the package.
    Will the cheapest solar charger from China be able to charge a smartphone?
  • #17
    ORMO_PL
    Level 19  
    DJCheester wrote:


    I definitely recommend this solution.

    Regards...


    A colleague is not afraid of cells charged without the use of a balancer?
  • #18
    DJCheester
    Level 24  
    Parallel links and the balancer are very good.
    In powerbanks there is exactly the same (parallel) connection of cells, only a smaller number.

    There is no fear. Regards...
  • #19
    ORMO_PL
    Level 19  
    aaa it's pardon, I haven't seen the balancer.
    Without such devices, these cells end their lives very quickly :D
  • #20
    DJCheester
    Level 24  
    I know, for me, the charging takes place from the solar panel through the step-down converter at the output, the converter maintains 5V at different times of sunlight, unless it already exceeds the minimum value, then it does not charge. As a charger for the cell, the TO4056 charger is used, which takes care of charging a single cell and because they are all in parallel, they behave as one with high capacity. In most of the projects I built in this way, I was solving the li-ion power supply, the batteries last a long time for several years and are doing well. The TP4056 charger as charging and the cell protection system also does not allow the voltage to drop below 2.8V, then it cuts the battery from the load. But for me, such a situation has not occurred yet, so that I would go down to 3V on this package, this package is always almost full. Regards ...