logo elektroda
logo elektroda
X
logo elektroda

Will the cheapest solar charger from China be able to charge a smartphone?

p.kaczmarek2 

Hello my dear.
I invite you to a practical test of the cheapest solar charger with USB 5V output. This charger comes in the form of a single 26cm x 14cm panel and has an integrated converter with (if possible) a stable 5V output. In this topic, I will check whether in sunny, March / April weather, you can actually charge the phone with it and then show what the inverter looks like from the inside. The test will be made from the perspective of a typical user, i.e. I will take two phones (Samsung and Apple) and check whether they can be charged to any significant extent throughout the sunny day.

Purchase of a solar charger
Now I am not able to quote the specific price for which I bought this gadget, because it was about 1.5 years ago, but similar chargers are on the network under the slogan "USB 5V solar charger 6W", at the moment at prices around $ 10:

This 6W is rather a bit exaggerated, although retailers also sell this product as 20W and above.

The dimensions of my charger (including margins) are 26cm by 14cm. There are several types of them on sale, all of them no-name, I am not able to recommend a specific seller who has "better" models.


First test
I chose the simplest possible test methodology - I just pick up the phone and try to charge it.
I made my first attempt on March 14th. A sunny day, one of the warmest. Around 15C.
I started charging at 13:30 with a 13% battery charge. I was charging via USB Doctor all the time, which significantly lowered the charging efficiency.


At 2:53 PM it was already 22%:

83 minutes of charging - an increase of approximately 9%.


Second test
I did the second test on March 23. Sunny day, almost 20C, it's practically spring.
This time I decided to charge directly from the panel, without an additional voltmeter / ammeter.
The day before the test, I unloaded the phone to zero, especially turning on the applications (something with 3D graphics) and the flashlight.

At 9:30 I made sure my phone was completely discharged to 0%.

At 10:39 am I unfolded the panel and started charging (or so I thought).

It turned out that I miscalculated - the phone did not charge at all, as I later checked the USB Doctor himself, it showed that no electricity was flowing.
At 12:52 I decided that it did not make sense - the phone is loaded to 0% and it is not able to start charging from this panel.
I made sure that the USB cable and the panel were really working - the LD25 showed almost 2.5W:

I decided to charge the phone a bit from my laptop. Just for the display to start working:

I charged it to 2%.
Around 1:12 pm I reconnected the phone and checked the power consumption.


0.23A at 4.6V = 1W.
However, it should be remembered that USB Doctor can lower it, and for example the LD25 showed almost 2.5W.
At 1:18 PM it was already 3%.

At 13:27 it was already 7%.

At 2:35 pm it was already 39%.

By 15:07 it was already 53%.

At 15:58 already 73%:

At 16:23 already 82%:

The phone was almost fully charged. Unfortunately, after 4:30 PM I had to finish, but I think that the experiment showed well that this charger works.
Conclusion: the phone completely discharged to 0 did not start charging, and when it was at least 1% it went smoothly.


Third test - iPhone 8
Now, for a change, a slightly different type of phone - iPhone 8, also unloaded to 0.

I started loading at 11:09 am:

This time I checked the currents on the USB Doctor right away - so that the phone is not charging because it is not turned on ... the results, however, were promising:


0.62A at 4.24V. This voltage is much lower than the minimum according to the USB standard (4.75V), but the phone is still charging. The panel gives less than 3W.
At 11:21 it was already 5% (anticipating the question - the charging icon disappeared because I covered the panel while standing to take a photo):

11:42 - 10%:

12:42 - 22%:

13:11 - 31%:

At this stage, I had to stop charging, but this charged iPhone worked all day this and the next, which shows well that this charger and him could extend his life.


Balcony test, fixing the panel on the balcony
So far, all tests have been performed by me outdoors, in fairly good weather and with the possibility of regular correction of the panel arrangement.
For a change, I decided to try slightly more difficult conditions.
I decided to install the panel on the balcony facing south. I designed the mounting in Blender and printed it on a 3D printer:



The fastening has a tightening mechanism implemented on the bolt and an additional knob that facilitates tightening:

Additional (separately printed) elements holding the panel:


Ready mount, along with a red wire that only protects the panel so that if it is dropped, it does not fall down ...

I started the test at 10:20 with 3%. The sun was regularly blocked by clouds.

At 4:30 PM I stopped because it started raining - 66% charged.

So you can also charge the phone from the balcony.

What's inside the charger?
I think experienced users can guess what can be found inside such a solar charger, but I decided to check it anyway. The white plastic mold is stuck with glue, but with the help of a knife I was able to remove it:

Integrated circuit, choke, rectifying diode (Schottki) ... a step down converter?




The IC is XL1410E1 and the diode is SS34.


By the way, there is also a red LED on this module that lights up during operation. As you can see, the manufacturer assembled this charger from ready-made modules ...



Voltage before inverter, last tests
Due to bad weather, I had to wait a bit for a warm and sunny day, but when I finally did, I had the opportunity to measure the voltage in front of the step down converter.

Illuminated - 7V
Shaded - 6V
Finally, I tried to measure with a second USB meter:

but I did not note any news, and the display of this meter is not visible in the pictures anyway.

What could be done better?
My play with the charger had one purpose - to check whether an ordinary "Kowalski" is able to charge the phone with it. And I think I answered that - absolutely yes. 3W can be pulled out of it.
The test could, however, be carried out much more scientifically. External power supply, microcontroller, RTCC, saving the current current and voltage to the SD card and then drawing a nice graph ...
The same should be remembered that "% charge" is a bad representation of how much the charger gives us, because the cells have different capacities and are in different states of wear (with time their capacity decreases)
I am fully aware of it, but I still think that I answered the question on the subject.

Summary
It turns out that this little solar charger is definitely able to charge a large part of the phone in one sunny day. , just remember that:
- any USB meters connected to the phone make charging difficult (the voltage drop below the USB standard itself may prevent charging at all)
- depending on the phone, there may be a problem with charging the phone completely discharged (my Samsung discharged to the point of complete shutdown did not want to charge at all, but as soon as I charged it from the laptop to 1%, it started to charge normally from the solar charger)
- of course, that the USB cable and its resistance matter
When it comes to measurements, this charger in the March / April Polish sun was able to give me up to 0.5A at 5V for Samsung and approx 0.7A at 4.9V for iPhone.
Another issue also arises - you have to remember that the phone itself decides what current it can take from the charger . The ways of determining the current efficiency of a charger vary between manufacturers. Some just jumper the D + and D- lines, and others connect them to VDD and ground through specific resistors. However, stillbetter chargers have an integrated circuit responsible for negotiation (and I do not mean the QC standard and higher voltages - these systems are also in chargers working only on 5V), for example IP2112 . Charger test based on IP2112 you can see here.
To sum up, I was able to get the most from this charger about 3W.
On the basis of this, you can already count and estimate how much we will actually charge during the day (roughly, because the angle of illumination itself is important).
I would like to add that both phones used for testing do not have batteries on the verge of exhaustion and after charging with a solar charger I could use them normally for a day, up to two days depending on the intensity level (for example, this iPhone lasts for a very long time, unless you take photos or actively browsing the internet).
That's it for me.
If there is interest, then I will perform a more detailed test later, with the creation of a current / voltage graph over time, of course with an external power supply so as not to interfere with the measurement results, but I think it will not be necessary.
In the meantime, I ask - how many of you are prepared for a longer lack of electricity supply? Such a charger may seem like a toy, but I think that if there was no electricity for 2 days, it would really save many people the possibility of using the phone (in good weather).

About Author
p.kaczmarek2
p.kaczmarek2 wrote 11939 posts with rating 9990 , helped 572 times. Been with us since 2014 year.

Comments

LightOfWinter 13 Apr 2022 16:15

Hello If you are talking about a power cut of 2 days, a power bank will be much better. It charges much faster and has enough energy for a few charges. However, the device is interesting, a similar one... [Read more]

alikatek 13 Apr 2022 16:39

I have something similar only built into the powerbank. Theoretically, if you leave this powerbank in the sun, it will charge itself. On the practical side, it took me 9 days to charge it in the sun. The... [Read more]

ptero 13 Apr 2022 16:54

Hello. I had no electricity for 2 weeks recently ... No power bank would be able to withstand :) I have a similar home made device - a 50W solar panel and a charger with a 12v 24Ah battery. It worked... [Read more]

Anonymous 13 Apr 2022 19:40

Because some telephones completely discharged to 0, or turned off at initiation, they may consume a current exceeding the efficiency of such a solar charger ... Maybe it is worth attaching a small battery... [Read more]

viayner 13 Apr 2022 19:41

Hello, I once bought a "tourist" solar battery with a description of 30W !, it gives 5V and 1.2A short-circuit current, I charged a 10Ah powerbank and a day of full sun gives about 2500mAh. You can use... [Read more]

SylwekK 14 Apr 2022 07:57

It works continuously from the beginning, and the only thing I changed was a new 700Wh li-ion package: https://www.elektroda.pl/rtvforum/topic1764675.html It came in handy a few times, and recently,... [Read more]

MiroLord 14 Apr 2022 08:30

Once, after an adventure with a CO boiler (loaded and lit and no power here - it was stabilized at 96 degrees), I bought an emergency power supply from a Techtron ZA-TECH 500 with an AGN 65 Ah battery.... [Read more]

szeryf3 14 Apr 2022 08:43

@ p.kaczmarek2 I thought that you would write an opinion from your magic box after the test that it was rubbish and it was a pity for the money invested. [Read more]

DJCheester 14 Apr 2022 13:31

Hello, the charger will charge something from poverty, I mean the one from the author of the project, but keeping the phone in the sun all day does not serve this purpose, I used to make such a large powerbank ... [Read more]

Anonymous 14 Apr 2022 20:09

How much capacity do you have in this package? from 200Ah? Or is it better with the newest generation of 18650 cells in mind? [Read more]

DJCheester 14 Apr 2022 20:12

145000mAh, cells assembled from the disassembly of old packages, fully functional. Regards... [Read more]

michał_bak 18 Apr 2022 12:34

It is known that the amount of energy obtained from panels is determined by the amount of light incident on the panel. Some experiment can be done with such small panels. How will the panel change when... [Read more]

PiotrPitucha 18 Apr 2022 18:46

Hello I have a toy like Alikatek but my experiences are slightly different :( It turns out that some phones light up the screen for a few minutes while charging, instead of only displaying the percentage... [Read more]

OPservator 19 Apr 2022 13:10

It's cool, but as a day PV on the roof fry me 26-40kW, when charging from a 230V socket, I charge from the panel in an hour :D [Read more]

tad224 22 Apr 2022 20:57

So the cell had 5 V * 1.2 A = 6 W and it was really 80%, or 5 W. Another thing is that in Finland ... I have several panels and mine 30W is really 18W active power. A 50 W dawal 22 W. The author... [Read more]

ORMO_PL 25 Apr 2022 08:52

A colleague is not afraid of cells charged without the use of a balancer? [Read more]

DJCheester 25 Apr 2022 08:55

Parallel links and the balancer are very good. In powerbanks there is exactly the same (parallel) connection of cells, only a smaller number. There is no fear. Regards... [Read more]

ORMO_PL 27 Apr 2022 12:03

aaa it's pardon, I haven't seen the balancer. Without such devices, these cells end their lives very quickly :D [Read more]

DJCheester 27 Apr 2022 12:30

I know, for me, the charging takes place from the solar panel through the step-down converter at the output, the converter maintains 5V at different times of sunlight, unless it already exceeds the minimum... [Read more]

%}